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Abstract

The paper proposes a novel wall-function formulation applicable to any RANS turbulence model. It is based on the

assumption of wall layer universality, applied to the entire model. The approach is implemented via tables for the tur-

bulence quantities and the friction velocity us. The influence of numerical errors on the wall-function solution is inves-

tigated and improvements are proposed. Numerical results are presented for a flat plate boundary layer at zero pressure

gradient and for a flow with pressure gradient driven separation. The behavior of RANS turbulence models in the near

wall region is also analyzed. The models considered are: Spalart–Allmaras, k–x, k–g and v2–f. The analysis of the v2–f

model resulted in new analytical solutions in the viscous sublayer and logarithmic layer. The analytical solutions for the

Spalart–Allmaras model can be used directly as a simple wall function.

� 2004 Elsevier Inc. All rights reserved.
1. Motivation and background

The size of industrial CFD problems has grown considerably in recent years and, despite a rapid increase

in computational resources, there are still many applications for which the grid resolution is insufficient for

wall integration and accurate wall functions are a necessity. For example, computation of rotating stall in
turbomachinery requires large scale, detailed flow-field predictions in the entire compressor [18]; assuming

that a high quality grid is employed in each blade passage, the computational grid would easily exceed 50

million cells. Wall functions are also an essential ingredient for the development of Cartesian Immersed

Boundary RANS methods [7]. Shortcomings of existing wall functions motivate further research in this

field.
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In wall bounded flows, a large number of computational cells are generally used to resolve the boundary

layers. Wall integration of turbulence models requires the first computational cell above the wall to be lo-

cated within the viscous sublayer, at about y+ = 1. Wall functions are meant to circumvent the excessive

grid requirements. For instance, the first cell might be placed in the logarithmic layer, leading to a signif-

icant reduction in the number of cells in the boundary layer. Ideally, this is to be done without a significant
loss in accuracy. In a typical wall integration grid with a normal-to-the-wall stretching of 1.15, there are

about 40 cells located in the boundary layer for a momentum thickness based Reynolds number of

Reh = 5000 and only 15 cells for a corresponding wall-function grid with the first cell at y+ = 100. This rep-

resents substantial savings, justifying the development and use of wall functions. The gain in computational

efficiency is not only due to the smaller grid size but also to a decrease of the cell aspect ratio near the wall,

which reduces computational stiffness.

The theory that lies behind wall functions is the universal character of the law-of-the-wall. This asserts

that under many flow conditions the form of the solution between the wall and the outer edge of the log-
arithmic layer is invariant when appropriate scaling is used. From early on, with the development of the

first successful RANS turbulence model [8], the universal character of the logarithmic layer has been in-

voked to design off-wall boundary conditions. The earliest wall functions required the first point above

the wall to lie in the logarithmic layer. That is a too severe constraint, which will often be violated by

the grid. If the grid point lies in the viscous sublayer, log-layer wall functions are generally very inaccurate.

Wall functions that do not restrict the location of the first grid point between wall and logarithmic layer are

called adaptive wall functions – or, sometimes, low y+ wall functions. These have a long history. Several

have been developed recently in [16]. The present paper addresses some of the shortcomings of the existing
adaptive wall functions and aims at the development of an efficient and robust approach that is applicable

to various turbulence models.

Three main issues need to be addressed in the development of adaptive wall functions. First of all, the

correct physical boundary conditions need to be provided to the flow solver independently of the location

of the first node above the wall. Although this sounds trivial, most approaches compromise on the condi-

tions for the turbulence variables or on conditions in the intermediate (buffer) region. For example, in [16] a

zero derivative boundary condition for the turbulent kinetic energy dk/dy = 0 is used throughout the

boundary layer. While this is true in the viscous sublayer and in the logarithmic layer, it is far from true
in the intermediate region 5 < y+ < 30. It is this intermediate region that presents a challenge to the adaptive

approach.

The numerical accuracy is the second issue that needs to be addressed. The implication of taking the first

grid point away from the wall vicinity is that the grid is relatively coarse. Fine grids are needed for wall

integration because strong gradients of the flow and turbulence variables exist in the viscous layer. The

truncation errors of discretized operators are significant on wall-function grids. Even if the boundary con-

dition is proper to the location of the first cell center, numerical inaccuracy can pollute the results. This

paper investigates simple corrections that alleviate these errors and improve the predictions. The separation
of numerical errors from the approximation to the physics is non-trivial and requires very careful

investigation.

Last but not least, the range of validity of the given wall function needs to be addressed. Criteria that

restrict the maximum of the first cell center y+ value can be derived for the given flow Reynolds number.

The applicability of the proposed concept to more complex flows is assessed through the application of the

adaptive wall functions to flows with pressure gradient driven separation.

The paper is organized as following. In Section 2, the near-wall behavior of four turbulence mod-

els (Spalart–Allmaras, k–x, k–g and v2–f) is discussed and a new wall-function formulation is pro-
posed. The numerical implementation and the RANS flow solver used in the computations are

presented in Section 3. Detailed numerical results for flow over a flat plate at zero pressure gradient

and for recirculating flow with an imposed streamwise pressure gradient are presented in Section 4.
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The complete equations of the turbulence models are given in Appendix A. A comparison of RANS

turbulence models results with DNS data for a recirculating flow at low-Reynolds number is included

in Appendix B.
2. Near-wall behavior

In this paper, we restrict our investigation to incompressible flow with constant molecular viscosity. For

turbulent flow conditions, the velocity profile can be split into three distinguished regions: the viscous sub-

layer, the logarithmic layer and the defect layer. The location of the outer edge of the logarithmic layer de-

pends on the Reynolds number as shown in Fig. 1(a). The extent of the logarithmic layer grows with

increasing Reynolds number.

In a quasi-equilibrium boundary layer (e.g., flow over a flat plate at zero-pressure gradient), the region
between the wall and the outer edge of the logarithmic layer is universal; i.e., the profiles of the flow vari-

ables collapse when scaled with the friction velocity us and molecular viscosity m. This universality allows

the derivation of wall functions.

Near the wall, derivatives in streamwise direction can be neglected and the flow and turbulence variables

depend only on the coordinate y, which is directed normal to the wall. Essentially, this is a turbulent Cou-

ette flow approximation. To derive solutions for the viscous sublayer and logarithmic layer, the equations

are recast in non-dimensional form. The velocity and various turbulence variables in plus units are:
Fig. 1.

and di
Uþ ¼ U
us

, yþ ¼ yus
m

, mþt ¼ mt
m
, ~mþ ¼ ~m

m
, kþ ¼ k

u2s
, xþ ¼ xm

u2s
,

gþ ¼ gusffiffiffi
m

p , �þ ¼ �m
u4s

, v2
þ ¼ v2

u2s
, f þ ¼ f m

u2s
: ð1Þ
These variables, and the equations for the viscous sublayer and the logarithmic layer are described below
for various models.
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2.1. Reynolds-averaged Navier–Stokes equations

As explained above, for the flow over a flat plate at zero-pressure gradient the RANS equations simplify

in the region between the wall and the outer edge of the logarithmic layer to
d

dy
ðlþ ltÞ

dU
dy

� �
¼ 0: ð2Þ
Integration along the wall normal coordinate y yields
ðlþ ltÞ
dU
dy

¼ qu2s : ð3Þ
This equation states that the sum of the viscous and turbulent shear stress is constant and equal to the wall

shear stress sw ¼ lðou=oyÞw ¼ qu2s . Introducing the non-dimensionalization (1), Eq. (3) becomes
ð1þ mþt Þ
dUþ

dyþ
¼ 1: ð4Þ
The linear law, U+ = y+, follows for the viscous sublayer where mþt � 1. In the logarithmic layer, mþt is large

and Eq. (4) is usually approximated with
mþt
dUþ

dyþ
¼ 1: ð5Þ
Using Prandtl�s assumption for the turbulent viscosity [12],
mþt ¼ jyþ, ð6Þ

the logarithmic law U+ = (1/j) log(y+) + Blog follows with the experimentally fitted constants j = 0.41 and
Blog = 5.0.

Suppose mþt were known. Then (4) could be integrated to find the universal function U+(y+). An early

approach was to assume a form for that function, such as Spalding�s profile [15]. However, it is more con-

sistent to develop the function that is appropriate to each model by solving the wall layer equations numer-

ically. Now, knowing the universal function, the friction velocity can be solved from the computed velocity

at the first grid point. Say that is U1, evaluated at y1. If this lies in the wall layer, then
Rey � y1U 1=m ¼ yþ1 U
þðyþ1 Þ ¼ F ðyþ1 Þ, ð7Þ
Rey is the Reynolds number obtained from the first cell. The right is a universal function. Inverting this

function gives
y1us=m ¼ F �1ðReyÞ:

Hence, us can be found. Given F ðyþ1 Þ, the inversion can be done iteratively by Newton�s method. However,

this can be done once and for all, and the inverse function stored in a table [5]. That is the method used in

our computations. In a finite volume formulation, the friction velocity is used in the momentum balance.

Hence, it serves as a boundary condition for computing U1. In a finite difference formulation, (4) provides a

velocity gradient boundary condition.

The eddy-viscosity is explicitly related to the velocity profile. In the entire region between the wall an the

outer edge of the logarithmic boundary layer the eddy-viscosity is related to the velocity gradient according

to Eq. (4):
mþt ¼ dyþ

dUþ � 1: ð8Þ
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In some wall-function formulations, the velocity profile and eddy-viscosity do not obey this relation. The re-

sult is grid dependence. Onemight use (8) to obtain a boundary condition on one turbulence variable, thereby

ensuring consistency between the eddy-viscosity and the velocity gradient: for instance, in thek–xmodel, the k

condition can be obtained from (8), given a condition onx. In the present paper, consistency comes from solv-

ing themodel equation in thewall layer. Formally, thewall function shouldmatch smoothly to the outer, com-
putational region. Consistentmatchingwould produce a grid independent formulation – although the issue of

numerical accuracy must be addressed and the assumption of quasi-equilibrium is a caveat.

For the turbulence equations, analytical solutions can often be derived for the viscous sublayer and for

logarithmic layer. However, the intermediate region is problematic. This can be addressed by generating a

look-up table for each non-dimensionalized turbulence variable from a well-resolved numerical solution.

This table can take the form of spline coefficients. The analytical solutions in the viscous sublayer and

the logarithmic layer for the Spalart–Allmaras, k–x, k–g and v2–f models are discussed in the next section.

2.2. Spalart–Allmaras model

Near the wall, Eq. (A.3) can be written as
cb1ð1� ft2Þ~S
þ
~mþ þ cb1

j2
ft2 � cw1fw

� � ~mþ

yþ

� �2

þ cb2
cb3

d~mþ

dyþ

� �2

þ 1

cb3

d

dyþ
ð1þ ~mþÞ d~m

þ

dyþ

� �
¼ 0, ð9Þ
where ~mþ � v.
In the viscous sublayer, the functions fv1 ! 0, f v2 ! 1� ~mþ and f w ! 1. The strain is S+ = dU+/dy+ = 1

and the dominant term in the modified strain is ~S
þ ¼ ~mþ=ðj2ðyþÞ2Þ. Eq. (9) can be simplified to
ð1þ cb2Þ
d~mþ

dyþ

� �2

� ~mþ

yþ

� �2
 !

þ ð1þ ~mþÞ d2~mþ

ðdyþÞ2
¼ 0: ð10Þ
The function ~mþ ¼ jyþ satisfies Eq. (10), i.e. ~mþ varies linearly in the viscous sublayer. The eddy-viscosity

mþt ¼ ~mþfv1 varies as (y
+)4.

It can easily be shown that in the log-layer ~mþ ¼ mþt ¼ jyþ. Indeed, one of the elements of this model is to

formulate the ~m-equation such that ~m is approximately linear from the log-layer to the wall.

Near-wall behavior of eddy-viscosity mþt and ~mþ is presented in Fig. 2. ~mþ is indeed approximately linear
in the entire wall layer and the slope is approximately equal to j.
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Fig. 2. Eddy-viscosity mþt and modified eddy-viscosity ~mþ for Spalart–Allmaras model.
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Since Spalart–Allmaras is a one-equation model, a wall function can be derived without any prior

knowledge about the behavior of ~mþ in the near-wall region. The eddy-viscosity is computed from Eq.

(8) and ~mþ is computed from the eddy-viscosity definition: ~mþ ¼ mþt =fv1. This must be solved iteratively,

but, as mentioned previously, that can be done once, and the inverse function stored tabularly.

Alternatively, the linear behavior of ~mþ between the wall and outer edge of the logarithmic layer can be
used to define an adaptive wall function:
~mþ ¼ jyþ, mþt ¼ ~mþfv1, f v1 ¼
ð~mþÞ3

ð~mþÞ3 þ c3v1
: ð11Þ
2.3. k–x model

In the viscous sublayer, the equations of the standard k–x model (A.13) and (A.15) reduce to
�Clx
þkþ þ d2kþ

ðdyþÞ2
¼ 0, ð12Þ

�b1ðxþÞ2 þ d2xþ

ðdyþÞ2
¼ 0: ð13Þ
Eq. (13) has the singular solution
xþ ¼ 6

b1ðyþÞ
2
: ð14Þ
Non-singular solutions also exist, but this is considered the appropriate solution for smooth walls [17].
Wilcox has shown in [17] that the numerical discretization of such a function causes serious numerical

errors in the viscous sublayer. He suggested to enforce the analytical solution (14) in all points in the com-

putational grid for which y+ < 2.5.

Using expression (14), Eq. (12) can be solved for turbulent kinetic energy in the viscous sublayer
kþ ¼ CkðyþÞ3:23: ð15Þ

This equation satisfies the boundary conditions k+(0) = 0 and dk+/dy+(0) = 0. The eddy-viscosity,

mþt ¼ kþ=xþ, varies as (y+)5.23 in the viscous sublayer.

In the logarithmic layer, the k–Eq. (A.13) is:
d

dyþ
rkm

þ
t

dkþ

dyþ

� �
þ mþt

dUþ

dyþ

����
����
2

� Clx
þkþ ¼ 0: ð16Þ
The diffusion term is usually assumed to be small compared to the other two terms. Setting it to zero implies

that the diffusive flux is constant
rkm
þ
t

dkþ

dyþ
¼ Ck: ð17Þ
The eddy-viscosity in the logarithmic layer is approximately mþt ¼ jyþ and Eq. (17) can be integrated as
kþ ¼ Ck

rkj
logðyþÞ þ Bk: ð18Þ
The balance of production and dissipation in Eq. (16) provides an expression for the specific dissipation

rate. Using kþ ¼ mþt x
þ gives xþ ¼ jdUþ=dyþj=

ffiffiffiffiffiffi
Cl

p
or
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xþ ¼ 1

j
ffiffiffiffiffiffi
Cl

p
yþ

, ð19Þ
which uses the relation (5) between velocity gradient and eddy-viscosity. k+ follows:
kþ ¼ 1ffiffiffiffiffiffi
Cl

p : ð20Þ
Thus, the turbulent kinetic energy is constant in the logarithmic layer and the constant Ck in Eq. (17) is zero

for this model.
In the intermediate region, x+ is usually approximated with some form of interpolation between the vis-

cous sublayer value xþ
vis (Eq. (14)) and the log-layer value xþ

log (Eq. (19)). In [16], it is suggested:
xþðyþÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½xþ

visðyþÞ�
2 þ ½xþ

logðyþÞ�
2

q
: ð21Þ
An alternative to Eq. (21) is to solve the model equations and develop a tabulated curve fit. A comparison

between a look-up table value for x+ and Eq. (21) reveals a discrepancy for the intermediate region. Using a

look-up table obtained from the numerical solution is superior.

There are no satisfactory interpolation formula for k+ given in the literature [19–21], and usually the con-

dition dk+/dy+ = 0 is applied [16]. However, this is only correct at the wall and in the logarithmic layer. It is
incorrect in the intermediate region. A boundary condition on k+ that is consistent with x+ and the velocity

profile is
kþ ¼ mþt x
þ ¼ dyþ

dUþ � 1

� �
xþ: ð22Þ
This could be used with Spalding�s formula for dy+/dU+ or with the velocity profile tabulated from a com-

putational solution.

2.4. k–g model

The k–g model [6] is derived from the k–x model by substituting x with g:
gþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1

Clxþ

s
: ð23Þ
In the viscous sublayer, x+ is given by Eq. (14) and therefore g+ behaves as
gþ ¼
ffiffiffiffiffiffiffiffi
b1

6Cl

s
yþ: ð24Þ
In the logarithmic layer, g+ is
gþ ¼
ffiffiffiffiffiffiffiffiffiffiffi
jyþffiffiffiffiffiffi
Cl

p
s

: ð25Þ
2.5. v2–f model

The analysis in this section is given for the general version of the v2–f model [9] and is valid for N = 1 or
N = 6. The numerical simulation was carried out for N = 6 and, therefore, any coefficients that result from

the numerical solution are valid only for that version.
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In the viscous sublayer, the v2–f-equations reduce to:
�eþ þ d2kþ

ðdyþÞ2 ¼ 0,

� C�2

6
ðeþÞ1:5 þ d2eþ

ðdyþÞ2 ¼ 0,

�N eþðv2Þþ
kþ þ kþf þ þ d2ðv2Þþ

ðdyþÞ2 ¼ 0,

2
3
ðCf 1 � 1Þ � ðN � Cf 1Þ ðv2Þþ

kþ � 6

ðeþÞ0:5 f
þ þ C2

gC
2
L6

eþ
d2fþ

ðdyþÞ2 ¼ 0,

9>>>>>>>=
>>>>>>>;

ð26Þ
in which the Kolmogoroff limit has been used for the time scale T and length scale L.

The e+–Eq. (26) is decoupled from the rest of the equations. An analytical solution of this equation is
eþ ¼ 14,400

C2
�2

1

ðyþ þ CÞ4
: ð27Þ
Using the solution for e+, the k+–Eq. (26) can also be integrated analytically (with the boundary conditions:
k+(0) = 0 and dk+/dy+(0) = 0):
kþ ¼ 2400

C2
�2

1

ðyþ þ CÞ2
þ 2yþ

C3
� 1

C2

" #
: ð28Þ
A single integration constant has been allowed in Eqs. (27) and (28). To obtain a unique solution, an addi-

tional condition is required. In [3], a locally quadratic behavior is imposed on k+ by assuming k+ = Ck(y
+)2.

Introducing this in Eq. (26) provides a condition for e+:
eþ ¼ 2
kþ

ðyþÞ2
, ð29Þ
which can be used as a boundary condition by imposing eþw � eþ1 ¼ 2kþ1 =ðyþ1 Þ
2
. The constant C can now be

computed from a numerical solution, which gives approximately C � 11.0.

The f+ equation can be solved if the term ðN � Cf 1Þððv2Þþ=kþÞ in (26) is neglected:
f þ ¼ C1ðy þ CÞ
1
2
þ
ffiffiffi
D

p
þ C2ðy þ CÞ

1
2
�
ffiffiffi
D

p
� 0:1188

ðy þ CÞ2
, ð30Þ
where D ¼ 1
4
þ 120

C2
gC

2
LCe2

.

In [3], a boundary condition for f+ is derived by assuming that ðv2Þþ behaves locally as ðv2Þþ ¼ Cv2ðyþÞ4
and introducing that in Eq. (26):
f þ ¼ �4ð6� NÞðv2Þþ

eþðyþÞ4
: ð31Þ
Using this boundary condition, the coefficients C1 and C2 in (30) can be adjusted to fit the numerical solu-

tion for f+ (C1 = 0.000505 and C2 = �0.004950). The solution for f+ fits the numerical solution perfectly, as
shown in Fig. 3. This might mean that the term ðN � Cf 1Þðv2Þþ=kþ in the f+-equation has limited impact in

the viscous sublayer.

The eddy-viscosity, mþt ¼ Clðv2ÞþTþ ¼ 6Clðv2Þþ=
ffiffiffiffiffi
eþ

p
, varies locally as (y+)4. A comparison of eddy-

viscosity profiles in the near-wall region computed with various turbulence models is presented in Fig. 4.

In the logarithmic layer, the k and v2–Eqs. (A.24) and (A.26), respectively, are:
d

dyþ
mþt

dkþ

dyþ

� �
þ mþt

dUþ

dyþ

����
����
2

� eþ ¼ 0, ð32Þ
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Fig. 3. Numerical solution for k+, ðv2Þþ, e+ and f+ computed using wall integration vs. theoretical solution.
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d

dyþ
mþt

dðv2Þþ

dyþ

 !
þ kþf þ � N

ðv2Þþ

kþ
eþ ¼ 0: ð33Þ
As before, diffusion is assumed to be small compared to the other two terms. The assumption that the dif-

fusion term in Eq. (32) is small means that diffusive flux is constant:
jyþ
dkþ

dyþ
¼ Ck: ð34Þ
Integrating, Eq. (34) yields
kþ ¼ Ck

j
logðyþÞ þ Bk: ð35Þ
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In the same way,
ðv2Þþ ¼ Cv2

j
logðyþÞ þ Bv2: ð36Þ
From (32), using dUþ=dyþ ¼ 1=ðmþt Þ we have
eþ ¼ 1

mþt
¼ 1

jyþ
: ð37Þ
Similarly, from (33) we have
f þ ¼ N
ðv2Þþ

ðkþÞ2
eþ: ð38Þ
A fit to the numerical solution of v2–fmodel in the log-layer gives the following values for the constants (see
Fig. 3):
Ck ¼ �0:416, Bk ¼ 8:366, Cv2 ¼ 0:193, Bv2 ¼ �0:940: ð39Þ

The logarithmic behavior of the turbulent kinetic energy in the logarithmic layer is supported by direct

numerical simulation (DNS) [14] and experimental data at higher Reynolds numbers [2]. The DNS data

were fit by [14]
Ck ¼ �0:36, Bk ¼ 8:15: ð40Þ

The DNS (40) and v2–f (39) values are similar. Note that the DNS was carried out at Reh = 1410 and the

model results were obtained for Reh = 7700.
3. Numerical implementation

The adaptive wall functions described above are implemented in a three-dimensional, Cartesian, incom-

pressible RANS flow solver [7]. It is based on a standard, cell centered SIMPLE algorithm. The momentum

equation for each velocity component, Poisson equation for the pressure and transport equations for the

turbulence variables are solved sequentially with a fully implicit numerical scheme. A blending of sec-

ond-order central differences with first-order upwind is employed for the convection terms and second-

order central differences are used for the discretization of the diffusion terms. Halo cells are used to impose

boundary condition.

There are many ways to implement wall functions into a Navier–Stokes code. However, the main ingre-
dients are as follows. The u-velocity component requires a condition that ensures the correct shear stress at

the wall (Eq. (3)). Since the diffusion term is treated implicitly here, the correct wall flux is included as an

explicit correction on the right-hand side. To compute the correction, us is needed. As explained in Section

2.1 using the values y1 and U1 from the first cell center a local Reynolds number Rey is computed. A value

of us is obtained from the corresponding look-up table.

The look-up tables were created from an accurate numerical wall integration solution of a flow over a

flat plate at zero-pressure gradient. At a sufficiently high Reynolds number (Reh > 5000) profiles of non-

dimensional variables were approximated using cubic splines. For variables with large variations in the
boundary layer the curve fit is done for their logarithm (e.g. logx+ is fitted in place of x+). This reduces

the interpolation error.

An off-wall boundary condition is adopted for the turbulence variables by enforcing the first cell-center

values. These values can be obtained from the near-wall behavior of turbulence models. If the first cell cen-
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ter yþ1 lies in the viscous sublayer or in the logarithmic layer, the analytical expressions given in the previous

sections can be used directly. For the intermediate region, interpolation formula are needed. Alternatively,

a look-up table for each variable can be used in the entire near-wall region. This approach has been adopted

for the numerical simulations in this paper.
4. Numerical results

Wall functions are designed to be used with coarse near-wall grids. The solution of the discrete RANS

equations is associated with a numerical error that increases with decreasing grid resolution. The difficulty

in testing wall-function implementations is to distinguish between this numerical error and inaccuracies that

may result from the physical model. What we will call a d-grid eliminates the numerical error and provides a

test for the correctness of the applied boundary conditions. In the d-grid, a wall integration grid is shifted
by a distance d into the flow to provide the desired y+ location of the first cell as shown in Fig. 5. The wall

functions provide the desired boundary conditions. At the same time, the grid resolution and the associated

numerical error is of the same order as for the wall integration. Note that this grid is only used to test the

physical boundary conditions. Standard grids are subsequently used to test the adaptive wall functions.

4.1. Flow over flat plate

Flow over a flat plate was solved to the downstream location defined by momentum thickness based
Reynolds number of Reh = 7700. All turbulence models have been solved on d-grids with first cell center

at y+ = 0.11, 1.1, 2.5, 5, 11, 25, 111. After considering the d-grid, solutions will be given on standard coars-

ened grids with the same first cell center y+ values.

When d-grids are used with the correct boundary conditions, the computations collapse onto the wall

integration profile. This is true for all the models considered, as shown in Fig. 6. Since the results for all

the grids are practically coinciding, the colors of the curves are chosen to alternate between grey and black

to visualize the first grid point for each grid.

The results obtained on ‘‘classic’’ coarse grids are presented in Fig. 7. The spread in the results is the
consequence of numerical errors. This is inferred from the fact that solutions on the d-grids collapse on

the wall integration result.
δ

computational
   domain

wall integration grid (y+ = 1) wall functions grid (y+ = 20) wall functions with

δ

   grid (y+ = 20)

Fig. 5. d-grid: wall integration grid shifted for a distance d.



(a) (b)

(d)(c)

(e) (f)

(h)(g)

Fig. 6. Application of adaptive wall functions using d-grids. Velocity and eddy-viscosity profiles (a) and k and x profiles (b), k–x
model; velocity and eddy-viscosity profiles (c) and k and g profiles (d), k–g model; velocity and eddy-viscosity profiles, Spalart–

Allmaras (e) and v2–f model (f); k and v2 profiles (g) and e and f profiles (h), v2–f model.
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(e) (f)
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Fig. 7. Standard application of adaptive wall functions using coarse grids. Velocity and eddy-viscosity profiles (a) and k and x profiles

(b), k–x model; velocity and eddy-viscosity profiles (c) and k and g profiles (d), k–g model; velocity and eddy-viscosity profiles,

Spalart–Allmaras (e), v2–f model (f); k and v2 profiles (g) and e and f profiles (h), v2–f model.
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The spread of the U+ profiles is very important. In the defect region, this spread will affect the skin fric-

tion prediction. The numerical error is dependent on the turbulence model. Among the models that were

investigated, the Spalart–Allmaras model is most sensitive to the location of the first cell center. A compar-

ison between k–x and k–g demonstrates that the change from x to g reduces the numerical error associated

with the near wall behavior of x. The results also show that, in general, the error is the largest when the first
cell center is located in the region 5 < y+ < 11, despite the use of correct boundary conditions. The deviation

of the eddy-viscosity mþt when the first cell center is at y+ = 25 or y+ = 111 is present for all models. It can be

explained by the relative coarseness of the grid throughout the boundary layer as shown in Fig. 5.

4.2. Improving numerical results on coarse grids

An investigation has shown that the numerical error discussed in the previous section is mainly of local

character. Increased accuracy of the momentum flux at face 12 has a significant impact on the results.
As shown, the eddy-viscosity is a highly non-linear function of wall distance in the viscous sublayer and

the buffer region. The numerical scheme, however, uses a linear interpolation to compute the eddy-viscosity

at face 12 (Fig. 8) when computing the diffusive flux. A simple remedy is to enforce the correct value of mþt12
using the corresponding yþ12. This value can be computed from the appropriate analytical expression or

look-up table. This can be seen as having a more accurate interpolation scheme at our disposal.

Numerical results obtained with this methodology are presented in Fig. 10. The velocity profiles for Spal-

art–Allmaras and v2–f models are significantly improved. It is interesting to note, that even though the dif-

fusive flux has also been improved in the turbulence equations the impact on the turbulence variables is
negligible.

In order to demonstrate that the error in the turbulence equations is also of local character a second cor-

rection has been investigated. By fixing the correct turbulence variables values in the cell center 2 (e.g. from

the look-up tables) the numerical error has been completely eliminated. The results for the turbulence vari-
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Fig. 8. Near-wall grid structure.
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Fig. 9. dU+/dy+ and d2U+/dy+2 computed from Spalding formula.



Fig. 10. Adaptive wall functions using coarse grids + imposing mþt12 . Velocity and eddy-viscosity profiles, k–x (a), k–g model (b),

Spalart–Allmaras (c), v2–f model (d).
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ables are now nearly perfect as shown in Fig. 12. The velocity profiles are not affected by this modification,

except for the k–x model where a significant improvement is observed as shown in Fig. 11. It is question-

able whether this is of much practical value as the use of the look-up table should be limited to the first cell

center.
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Fig. 11. Velocity and eddy-viscosity profiles for k–x model; adaptive wall functions using coarse grids + imposing mþt12 and turbulence

variables at 2.



(a)

(c) (d)

(b)

Fig. 12. Adaptive wall functions using coarse grids + imposing mþt12 and turbulence variables at 2. k and g profiles, k–g model (a), k and

x profiles, k–x model (b) k and v2 profiles (c) and e and f profiles (d), v2–f model.
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Curiously, the largest error for the Spalart–Allmaras model in Fig. 10 is for the grid with the first cell

center y+ of 11. A closer look at the velocity profile reveals that the second derivative d2U+/dy+2 has a spike

at approximately that value of y+, as shown in Fig. 9. In order to investigate the influence of the errors in
the velocity gradient computation on the results, we performed an additional simulation for the Spalart–

Allmaras model with increased accuracy for the velocity gradient at face 12. This shifts the velocity profile

for y+ = 11, as shown in Fig. 13, resulting in a smaller spread of the U+ profiles.
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Fig. 13. Velocity and eddy-viscosity profiles for Spalart–Allmaras model; adaptive wall functions using coarse grids + imposing mþt12
and turbulence variables at 2 with improved accuracy for velocity gradient at 12.
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4.3. Recirculating flow

The proposed adaptive wall functions were derived for zero pressure gradient flow over a flat plate. The

ability of these wall functions to capture pressure gradient driven separation and reattachment is studied by

considering a very simple and reproducible test problem: the boundary layer over a flat plate with an im-
posed streamwise pressure gradient. The pressure gradient is modulated by suction and blowing applied at

a given distance from the plate as illustrated in Fig. 14.

This type of flow was computed with DNS by Na and Moin [11]. We performed RANS computations

for that test case and the results are presented in Appendix B. Unfortunately, that case is inappropriate for

studying wall functions for several reasons. First, the Reynolds number is very low ðRehin ¼ 300Þ and the

inflow profile does not have a distinct logarithmic layer therefore reducing the universal region of the

boundary layer to y+ < 20. Due to the low Reynolds number the flow is of transitional character. It is well

known that RANS turbulence models have significant difficulties predicting transitional flow. This can also
be seen from the results in Fig. 24 given in Appendix B. Finally, the suction and blowing jets used in [11]

and specified by Eq. (B.1) are positioned adjacent to each other creating a zone of large shear just above the

recirculation region. For high Reynolds numbers this shear produces high levels of turbulence which inter-

acts with the recirculation region, a situation that we prefer to avoid.

For the reasons mentioned above, we modified the test case of [11]. We now consider a flat plate of a

length L, with ReL = 3.6 · 107 (the flow approaching the recirculation region at x/L = 0.1 has a boundary

layer with Reh0:1 ¼ 6500). In order to minimize the interaction of the suction and blowing jets as well as the

interaction of the blowing jet with the recirculation itself, the vertical velocity component at the upper
boundary is prescribed as:
vðxÞ ¼ Ae�bðx�x1Þ2 � Ae�bðx�x2Þ2 : ð41Þ

The parameters in (41) can be adjusted to obtain a desired length and height of the recirculation region.

Suction and blowing is specified at a height h = 1/12 L. The vertical velocity is defined with A = 0.35u1,

b = 108/L2, x1 = 0.25L, x2 = 0.75L. Low levels of freestream turbulence intensity are prescribed at the in-
flow as well as for the blowing inflow at the upper boundary (see Fig. 14). The computational grid consists

of 312 · 96 cells. A detailed grid-dependence study has shown that this resolution provides sufficient accu-

racy both in x and y directions.

Streamlines and contours of eddy-viscosity computed using various turbulence models with wall integra-

tion are presented in Fig. 15. The skin friction and pressure distribution for zero pressure gradient and for a

recirculation-inducing pressure gradient are reported in Fig. 16. The results show significant sensitivity of

the solution to the model. The length of the recirculation region scaled with the displacement thickness d�0:1
symmetry

blowing

suction

outflow

wall

inflow
freestream

Fig. 14. Flat plate with separation induced via suction and blowing at the upper boundary.



Fig. 15. Streamlines showing the recirculation and contours of eddy-viscosity. The location of three of the velocity profiles presented in

Figs. 22 and 23 is indicated by (b–d).
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at x/L = 0.1 is in the range of 1000 < Lrec=d
�
0:1 < 1600. Thus by modifying the suction and blowing profile

and the Reynolds number the recirculation region is here significantly larger than the one presented in

Appendix B.

In order to assess the performance of the proposed adaptive wall functions (used here without numerical

corrections discussed in Section 4.2), we consider grids with the first cell center at y+ = 0.11, 1.1, 2.5, 5, 11,

25, 111, at the entrance. Note that in contrast to the flat plate the y+ values vary considerably in the recir-

culation region. Fig. 17 shows the variation of first cell center y+ along the plate. In the recirculation region,

the y+ values are significantly smaller than the corresponding flat plate y+ values.

Numerical indicate that the proposed wall functions function properly for Spalart–Allmaras and k–x
models (the same behavior was observed for k–g model). The skin friction coefficients computed using wall

integration and wall functions on the y+ = 0.11 grid coincide. In contrast, the skin friction computed with

the v2–f model using wall functions differ slightly from the wall integration solution on the y+ = 0.11 grid as

shown in Fig. 20(a). This might be caused by the non-zero boundary condition for e+ and its scaling with us.

As shown in Fig. 20(b), e+ is singular near the separation and reattachment points where us approaches

zero. In the current wall function concept, however, e+ in the first cell center is set to a constant value

of �0.26. This problem may be alleviated by using a more appropriate scaling for e+.
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Fig. 16. Skin friction (a) and pressure distribution (b) for the flow with recirculation with v2–f, k–x, k–g and Spalart–Allmaras models.



Fig. 18. Skin friction for zero pressure gradient (a) and adverse/favorable pressure gradient (b) using Spalart–Allmaras model:

comparison of wall-functions results.

Fig. 17. First cell center y+ values for the flow with recirculation with Spalart–Allmaras model using wall functions.

Fig. 19. Skin friction for zero pressure gradient (a) and adverse/favorable pressure gradient (b) using k–x model: comparison of wall-

functions results.
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Detailed coarse grid results are presented for Spalart–Allmaras and k–x models. Surprisingly, numerical

results presented in Figs. 18 and 19 show that skin friction in the recirculation region is not sensitive to the

first cell center y+ value. Despite the fact that pressure gradient and convection effects are not included in

the wall-function formulation the wall functions remain usable in that region. That may be because the

solution near the wall in the recirculation region scales similarly to the flat plate. Indeed, it is shown in Figs.
22 and 23 that, up to a certain y+, non-dimensional velocity and turbulent kinetic energy profiles collapse

onto the look-up table profiles which were computed for zero pressure gradient flow over a flat plate. The

universal region extends over a larger range of y+ values for Spalart–Allmaras than for the k–xmodel. Tur-

bulent kinetic energy profiles for the k–x model show a smaller extent of the universal region. This may

explain why the velocity profiles for the k–x model start to deviate earlier from the universal solution.

Coincidentally, the coarsest grid used in this analysis (see circles in Figs. 22 and 23) is still able to rep-

resent the recirculation region accurately. Obviously, this is influenced by the size of the recirculation. A

smaller recirculation region may not be sufficiently resolved with such a coarse grid and the first cell center
may lie outside the universal region.

For completeness, v2–f results are also included. Despite the observed inconsistency described above, the

wall functions are still able to predict the recirculation region as shown in Fig. 21. However, the sensitivity

to the first cell center y+ value is significant.
Fig. 20. (a) Comparison of skin friction computed with the v2–f model for y+ = 0.11 grid using wall integration and wall functions; (b)

Distribution of e+ in the first cell center computed using wall integration.

Fig. 21. Skin friction for zero pressure gradient (a) and adverse/favorable pressure gradient (b) using v2–f model: comparison of wall-

functions results.



Fig. 22. Velocity profiles for the flow with recirculation (Spalart–Allmaras model).
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Fig. 23. Velocity and k profiles for the flow with recirculation (k–x model).
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5. Conclusions

This paper discusses the near wall behavior of various advanced RANS turbulence models focusing on

the viscous sublayer and logarithmic layer. The analysis has implications for adaptive wall functions to be

used on grids that have a significantly lower resolution of the boundary layer than the typical wall integra-
tion grids.

New analytical solutions for the v2–f model have been derived for the viscous sublayer and the

logarithmic layer. These provide an insight into the physics of the model. For the Spalart–Allmaras

model, a simple wall function has been proposed that is based entirely on the near wall analytical

solution.

The analysis of the existing wall functions for the k–xmodel has shown significant deficiencies. These are

overcome by the adaptive wall function approach that we are proposing. It is also shown, that a simple

variable transformation, from x to g, circumvents the well known difficulties with x in the viscous sublayer.
In general, there is no satisfactory analytical approximation for the intermediate region (excluding

Spalart–Allmaras model). The look-up table concept seems to be an accurate and practical approach.

Indeed, the obtained numerical results are very satisfactory.

The look-up table concept allows an explicit evaluation of the friction velocity us which is usually ob-

tained with an iterative method. The tables may also be used to improve numerical stability. It is well

known that the v2–f model defined with N = 1 requires a coupled numerical solution of the model equations

due to the stiffness of the f boundary condition. The use of wall functions substitutes this boundary con-

dition removing the stiffness caused by it.
The proposed test case for the recirculating flow is very attractive since it eliminates the uncertainty re-

lated to the effects of curvature and quality of computational grid usually associated with recirculating

flows. The numerical results show that proposed wall function concept is applicable and accurate when

the grid resolution is sufficient for the given size of the recirculation region.

The adaptive wall functions are being tested for complex applications. Depending on the success with

these computations, future work on wall functions may focus on modifications considering pressure gradi-

ent and convection effects.

Finally, the look-up table concept may also be easily adapted to more complicated turbulence models
such as Reynolds Stress Models.
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Appendix A. RANS equations

This section contains the governing flow and turbulence models equations. The continuity equation is
r � u ¼ 0: ðA:1Þ

The momentum equations are:
otui þ u � rui ¼ � 1

q
rip þr � ½ðmþ mtÞrui�: ðA:2Þ
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A.1. Spalart–Allmaras turbulence model

The Spalart–Allmaras model [13] consists of one transport equation
ot~mþ u � r~m ¼ Qð~mÞ þ cb2
cb3

r~m � r~mþ 1

cb3
r � ½ðmþ ~mÞr~m�, ðA:3Þ
where the source term Qð~mÞ is
Qð~mÞ ¼ cb1ð1� ft2Þ~S~mþ ðcb1
j2

ft2 � cw1fwÞ
~m
d

� �2

: ðA:4Þ
The eddy-viscosity is
mt ¼ ~mfv1: ðA:5Þ

The model damping functions, auxiliary relations and the trip term are defined as
fv1 ¼
v3

v3 þ c3v1
, f v2 ¼ 1� v

1þ vfv1
, v ¼ ~m

m
, ðA:6Þ

fw ¼ g
1þ c6w3
g6 þ c6w3

� �1
6

, g ¼ r þ cw2ðr6 � rÞ, r ¼ ~m
~Sj2d2

, ðA:7Þ

~S ¼ S þ ~m

j2d2
fv2, S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

p
, f t2 ¼ ct3 expð�ct4v2Þ: ðA:8Þ
The variable d is the distance to the nearest wall, j the von Kármán constant and the strain rate tensor is

Sij ¼ 1
2
ðojui þ oiujÞ. Finally, the model closure coefficients are
cb1 ¼ 0:1355, cb2 ¼ 0:622, cb3 ¼ 2=3, cv1 ¼ 7:1, ðA:9Þ

cw1 ¼
cb1
j2

þ 1þ cb2
cb3

, cw2 ¼ 0:3, cw3 ¼ 2, ct3 ¼ 1:2, ct4 ¼ 0:5: ðA:10Þ
The wall boundary condition is
~m ¼ 0: ðA:11Þ
A.2. k–x model

In the Wilcox�s original, k–x model [17], the eddy-viscosity is defined as:
mt ¼ k=x: ðA:12Þ

The equation for turbulent kinetic energy is
otk þ u � rk ¼ Pk � Clxk þr � ½ðmþ rkmtÞrk�, ðA:13Þ

where
Pk ¼ mtS
2, S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

p
: ðA:14Þ
The equation for the specific dissipation rate x is
otxþ u � rx ¼ c1x
k

Pk � b1x
2 þr � ½ðmþ rxmtÞrx�: ðA:15Þ



G. Kalitzin et al. / Journal of Computational Physics 204 (2005) 265–291 289
The original model constants are
rk ¼ rx ¼ 0:5; c1 ¼ 5=9; b1 ¼ 0:075; Cl ¼ 0:09:
The wall boundary condition for k is:
k ¼ 0: ðA:16Þ

At the wall, the specific dissipation rate x asymptotically tends to infinity as �1/y2. In [10], it was suggested

to use the following boundary condition
x ¼ 60m

b1d
2
1

, ðA:17Þ
where d1 is the distance from the wall to the cell center of the first cell above the wall.

A.3. k–g model

The equations of the k–g model [6] are:
otk þ u � rk ¼ Pk �
k
g2

þr � ½ðmþ rkmtÞrk� ðA:18Þ

otg þ u � rg ¼ �a
g
2
Pk þ

b1

2gCl

� ðmþ rgmtÞ
3

g
rg � rg þr � ½ðmþ rgmtÞrg�, ðA:19Þ
with the eddy-viscosity defined as
mt ¼ Clkg
2: ðA:20Þ
The wall boundary conditions for the k–g model are
k ¼ 0, g ¼ 0: ðA:21Þ
A.4. v2–f model

In [4], the eddy-viscosity is defined as
mt ¼ Clv2T ðA:22Þ
with the turbulence timescale
T ¼ min max
k
e
,6

ffiffiffi
m
e

r� �
,

akffiffiffi
3

p
v2ClS

" #
ðA:23Þ
with a = 0.6.

The equation for turbulent kinetic energy is
otk þ u � rk ¼ Pk � eþr � ½ðmþ mtÞrk�, ðA:24Þ
where Pk is defined as in (A.14). Eq. (A.24) is supplemented by
oteþ u � re ¼ Ce1Pk � Ce2e
T

þr � mþ mt
re

� �
re

� �
: ðA:25Þ
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In addition to the equations for k and e, the model includes an equation for v2
otv2 þ u � rv2 ¼ kf � N
v2

k
eþr � ½ðmþ mtÞrv2� ðA:26Þ
with f representing the non-local effects:
f � L2Df ¼ ðCf 1 � 1Þ 2=3� v2=k
T

þ Cf 2
Pk

k
þ ðN � 1Þ v

2

kT
, ðA:27Þ
where the turbulent length scale L is
L ¼ CL max min
k3=2

e
,

k3=2ffiffiffi
3

p
v2ClS

" #
,Cg

m3=4

e1=4

" #
: ðA:28Þ
For solid walls, when d ! 0, this yields:
kð0Þ ¼ 0, v2ð0Þ ¼ 0, e ! 2mk

d2
, f ! � 4ð6� NÞm2v2

ed4
: ðA:29Þ
The original v2–f model with N = 1 was later modified (see [1,9]) in order to avoid the numerical difficulties

due to strong nonlinear coupling of turbulence variables through the boundary conditions (A.29). The va-

lue N = 6 results in f = 0 at viscous walls. In addition, the wall distance d has been eliminated from the

equation for Ce1. The model constants are:
Cl ¼ 0:22; Ce1 ¼ 1:4ð1þ 0:050

ffiffiffiffiffiffiffiffiffi
k=v2

q
Þ; Ce2 ¼ 1:9;

Cf 1 ¼ 1:4; Cf 2 ¼ 0:3; CL ¼ 0:23; Cg ¼ 70: ðA:30Þ
Appendix B. Comparison with DNS for recirculating flow

The direct numerical simulation (DNS) of recirculating flow by Na and Moin [11] is analyzed to assess

the performance of RANS turbulence models. The DNS test case consists of a boundary layer over a flat

plate with an imposed pressure gradient modulated by suction and blowing at a given distance from the

plate. In contrast to the test case shown in Fig. 14, an inflow profile is applied at the beginning of the plate.

The inflow profile is obtained from Spalart�s DNS [14] for Reynolds number Reh = 300. The dimensions
of the computational domain are: 350d�in 	 64d�in, where d

�
in is the displacement thickness for the inflow pro-

file. The vertical velocity component at the upper boundary is:
vðxÞ ¼ Aðx0 � xÞe�bðx0�xÞ2 , ðB:1Þ

with A ¼ 0:019u1=d

�
in,b ¼ 2:3110�4=d�in

2
and x0 ¼ 221:4d�in.

For the RANS computations, the inflow profiles for various variables were computed from Spalart�s
DNS data. The turbulent kinetic energy is computed from the turbulence intensities

k ¼ ðu2rms þ v2rms þ w2
rmsÞ=2, the variable v2 is set to v2rms and the eddy-viscosity is computed from the Rey-

nolds stress mt = �Æuvæ/(dU/dy). The variables x and g follow directly from the eddy-viscosity definitions

(A.12) and (A.20), respectively. The dissipation rate � and the modified viscosity ~m are obtained iteratively

from Eqs. (A.22) and (A.5), respectively. df/dn is set to zero.

Skin friction and pressure coefficients computed using various turbulence models are compared with

DNS data in Fig. 24. The results for skin friction show that all four turbulence models predict separation
and that the reattachment location agrees well with the DNS. However, the location of the separation point
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Fig. 24. Skin friction (a) and pressure coefficient (b) for recirculating flow at Reh,inflow = 300.
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is predicted too early and the skin friction is underpredicted upstream of the recirculation region. That can

be explained by the transitional nature of the inflow at Reh = 300. Spalart discusses this in detail in [14]. The

Reynolds stress � Æuvæ+ does not approach unity in the logarithmic layer, indeed it decreases with y+ > 30

(see Fig. 9 in [14]). It is well known that RANS models differ significantly in the prediction of transitional

flows. For this flow, k–x and k–g transition to turbulence earlier while Spalart–Allmaras and v2–f retain a

laminar character longer.
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